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G E N E R A T I O N  OF A N  E L E C T R O M A G N E T I C  F I E L D  

IN T H E  N O N S Y M M E T R I C  RA ILS  

AND P R O T E C T I V E  A R M A T U R E  OF A R A I L G U N  

U N D E R  A N  I N C R E A S I N G  C U R R E N T  P U L S E  

V.  F.  N i k i t i n  a n d  N .  N .  S m i r n o v  UDC 534 

The calculation of the electromagnetic field in a system of conductors under a powerful short-time 
current pulse for a time of the order of 1 msec is very important for various applications, in particular, for 
the design of powerful electromagnetic launchers (railguns). Here it is important to know the distributions of 
the electromagnetic field and heating in the conductors, which depend on the geometry and other parameters 
of the system. It is also important to know the forces on the conductors due to the electromagnetic field. In 
particular, the inductance per unit length in the system [1] is of significance. 

Various methods have been developed for the problems of calculating distributions of magnetic-field, 
heating, current density, and other parameters for a system of infinitely long conductors. These problems, 
however, have been solved or have relatively simple solutions for steady (direct) current or alternating high- 
frequency current. In the former case, it is necessary to solve a steady Poisson equation. In the second case, 
the approximation of a thin skin-layer in which current flows over the surface of conductors is operative [2]. If 
we consider a single current pulse whose duration is comparable with the characteristic time of magnetic-field 
diffusion into the conductors, the electromagnetic-field distribution differs considerably in both the former 
and the latter cases and varies in time greatly. In particular, launcher characteristics such as inductance and 
resistance per unit length vary in time as well. 

In the present paper, we construct a numerical model for calculating the electromagnetic field in a 
system of infinitely long conductors of an arbitrary profile which carries a time-varying current. A similar 
formulation of the problem was realized in [3], but in this paper, we give the most general formulation. We 
intend to find the electromagnetic-field distribution for an arbitrary (not necessarily symmetric) profile of 
a system of conductors separated by a dielectric. The system carries a current that arbitrarily varies with 
time and is different in magnitude and direction for different conductors. If a strong current flows in opposite 
directions in two conductors which are surrounded by a third conductor with a zero total current, which 
is a protective armature, the system models an electromagnetic railgun. This formulation of the problem is 
inadequate to model a real launcher, because the current is essentially three-dimensional. The problem was 
solved in three-dimensional geometry, for example, in [4-6]. A two-dimensional calculation, however, makes 
it possible to estimate the efficiency of one or another rail profile and the current distribution at a low cost 
of computer time, and is, therefore, very important for optimization problems. In addition, the numerical 
method proposed herein for solving the two-dimensional problem in the general formulation can be used not 
only for the calculation of rail launchers. 

Phys ica l  F o r m u l a t i o n  of the  P r o b l e m .  A system of several conductors infinite along a straight 
line is considered, As applied to the calculation of electromagnetic launchers, these conductors can be treated 
as rails, a protective metallic armature, and an inductance coil [1, 7, 8]. The conductors are isolated by 
a dielectric, and the entire system is also placed in the dielectric. In the cross section of the system, one 
conductor must not border on another conductor. Each of the conductors carries a time-dependent current 
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which is specified as an input parameter of the problem. The initial magnitude of this current is equal to 
zero. Zero magnetic induction and a uniform temperature distribution are initially assumed. At each time 
it is required to find magnetic-field, electric-field, current-density, and temperature distributions (assuming 
that the thermal energy is released owing to the Joule heating of the conductors), the distribution of the 
volume electromagnetic forces that act, due to the magnetic field, on the current-carrying conductors, and 
also integral parameters, such as resistance and inductance per unit length. Thus, we wish to realize the 
two-dimensional unsteady model in the general formulation. 

M a t h e m a t i c a l  Formula t ion  of the  P rob lem.  Let us introduce the system of coordinates Ozyz, 
assuming that all conductors of the system are aligned with the Ox axis. The Oy and Oz axes are located in 
the plane of the cross section. Without loss of generality, the coordinate origin can be located at any point 
that is fixed with respect to the system. 

For the Maxwell equations in the magnetohydrodynamic (MHD) approximation, we introduce a vector 
potential A and a scalar potential ~ by the following formulas [9]: 

OA 
B = r o t A ,  d i v A = 0 ,  E = g r a d r  0---7" (1) 

Here B is the magnetic-induction vector and E is the electric-field-intensity vector. Taking into account the 
Ohm law (neglecting Hall current), from the Maxwell equations and (1) we obtain 

V2A= a /~a (~-  - grad ~ ) ;  (2a) 

V2O = 0; (2b) 

j = -v2A/l~a (3) 

(j is the current-density vector, /~ is the absolute permeability of free space, and a is the conductivity of the 
material). 

The conditions B ---* 0 and E ---* 0 are considered boundary conditions for y and z tending to infinity. 
Therefore, without loss of generality, we set A ~ 0 and �9 ---* 0 for the electromagnetic potentials. Below, 
we show that the scalar potential can be considered continuous, and the vector potential can be considered 
continuously differentiable on the boundaries of the conductors. 

Assuming that the current flows only along the Ox axis over the entire length of the conductors, for 
the current density in the conductors we have 

j = j , e , .  (4) 

Here e~ is a unit vector along the Oz axis. 
It follows from relation (3) with allowance for (4) that the components Ay and Az of the vector 

potential in both the conductors and dielectrics obey the Laplace equation. Taking into account continuity of 
the potentials at the boundaries of the conductors and the boundary conditions at infinity, we find the solution 
Ay - Az - 0. Next it follows from the Ohm law and (4) that E in the conductor has a single component Ez, 
and (1) implies that the condition 

= sk(t ,  (5) 

must be satisfied in the conductor (k is the conductor number). Since jx does not depend on z, it follows 
from (1) and (3) that O~/Ox and A~ do not depend on z either. Therefore, the relation 

=  ok(t) + x k(t) (6a) 



must be satisfied in the conductor. For the dielectric, however, using the condition that the scalar potential 
is continuous at the conductor/dielectric boundary, from (2b) and (6a) we obtain 

r = r y, z) + x~(t,  y, z). (6b) 

It is impossible to find #0k(t) from the available equations, because all equations contain only the gradient of 
the scalar potential and, hence, r cannot be determined uniquely for the dielectric. For this, it is necessary 
to know the boundary conditions at the ends of the conductors or at two different cross sections of the system. 
Therefore, the problem of infinite parallel conductors is not closed. However, if we exclude #0 and ~0k from 
consideration, we come to a closed problem in which the gradient of the scalar potential ~(t, y, z) along the 
Oz axis is determined uniquely. 

Thus, we come to the following working equations and relations for the vector and scalar potentials: 

c92A~ 02Az (OA~ ~ok(t)); (7a) 
Oy------ ~ + ~ = a m  \---~ 

02q ~ + 02~ ~ 
OV 2 ~ = O; (7b) 

A y = A ~ = O ;  (7c) 

= ~ok(t) in the kth conductor. (7d) 

For the magnetic induction, electric-field intensity, and current density, we have the relations 

OAx OAx 
B , = 0 ,  By= Oz' Bz=-O----y' (8a) 

OAz 
Ez = ~ok Ot ' Ey = Ez = O in the conductor; (8b) 

Ex = ~k - 
OAx OEy 0~o OEz 0~o 
Ot ' Oz = O---if' Oz = 0-~ in the dielectric ; (8c) 

j z = g  qok- Ot ] '  J r = J ~ = O  in the conductor; (8d) 

J~ = Jr = jz = 0 in the dielectric. 

To close system (7), the conditions at infinity, 

A z = 0 ,  ~ = 0  f o r y = o o a n d z = o c ,  (9) 

should be supplemented by the condition for the passage of the given current Ik(t) through the kth conductor 
This condition is obtained from relation (8b) and relates Ik(t) and ~k(t) as follows: 

~k / ~dS = Ik + / ~dS. (i0) 
sk Sk 
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Here Sk is the cross-sectional area of the kth conductor. 
In addition, we assume that the scalar potential and its gradient ~ are continuous along the Ox axis, 

and the potential Az is continuously differentiable at the conductor-dielectric boundary. Let us show that, 
with no surface currents, these conditions do not contradict the corresponding conditions imposed on the 
vectors E and B in the MHD approximation. 

Sedov [10] showed that at a fixed boundary between two media, the following relations resulting from 
the integral Maxwell equations in the MHD approximation must be satisfied: 

Enl - En2 = V/r Erl  - E,.2 = O, Bnl  - Bn2 = O, B,-1 - B,.2 = p~(i x n).  (11) 

Here the subscripts n, r ,  1, and 2 denote, respectively, the vector component normal to the boundary, the 
vector component tangent to the boundary, and points on the opposite sides of the boundary; ca is the absolute 
dielectric permeability of free space; 7 is the surface-charge density; i is the surface-current-density vector; 
and n is a unit normal vector to the boundary. It follows from relations (Sb) that,  provided that the potential 
r and, hence ~v, are continuous, the tangent component of the vector E at the conductor-dielectric boundary 
is equal to Eze~, and its tangent component is continuous. The normal component can have a discontinuity, 
and its gradient with respect to x is equal to O~/On. This quantity determines with accuracy to a constant the 
surface charge induced in the conductors. If we assume that the vector potential is continuously differentiable 
at the boundary, the vector B is continuous at the boundary. Hence, conditions (11) are satisfied if the surface 
currents are absent. 

Calculation of the electromagnetic field in the profile plane of a railgun makes it possible to calculate 
physical effects produced by passage of a high current through the rails. 

The temperature of the conductors is calculated from the equation 

OT j~ (12a) pcp--~- = AV2T + ~-, 

where p is the density, % is the specific heat, and A is the thermal conductivity of the conductors. For the 
dielectric, the temperature is calculated as follows (neglecting Joule heat release): 

OT 
p%-~-~ = AV2T. (12b) 

As boundary and initial conditions for the temperature, we assume that,  as y --* oo and z ~ 0% the 
temperature tends to the initial temperature, and the temperature is continuous on the boundaries between 
different computation domains. 

The volume forces acting on the conductor due to the magnetic field are given by the formula f = j x B 
(here electric forces are ignored in comparison with magnetic forces in the MHD approximation). In our 
investigation, the volume forces are calculated by the formulas 

fy = jxB~,  f~ = - j ~ B y .  (13) 

By definition (see [2]), the inductance L and resistance R per unit length are calculated by the formulas 

L = 2 E , ~ / J  2, R = W / J  2. (14) 

Here Em is the electromagnetic energy per unit length of the system of conductors, W is the Joule heat output 
per unit length, and j2 is the square of the current strength in the circuit. In this investigation, these three 
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quantities are defined by 

jr jr d y (15) Em = : - - d E ,  W =  dE], = max 
r k 

E E 

The problem formulated in the general form is complicated, because, for the conductor region, the 
system of governing partial differential equations is parabolic, and for the dielectric domain, this system is 
elliptic for the vector potential and parabolic for the temperature. In addition, the integral equation (10) is 
used in the boundary conditions. 

Numer i ca l  Solut ion  of the  Problem.  To solve the problem numerically, we use a discrete grid 
with a constant spacing and the maximum numbers of grid points Ny and N, along the Oy and Oz axes, 
respectively. Each grid cell has an integer index that is equal to the conductor number to which it belongs, or 
to a number that is larger than the maximum conductor number (to the dielectric number). It is assumed that 
the conductor-dielectric interfaces run between neighboring grid cells and cannot run inside the grid cells. 
This gives an error in the location of the conductor boundaries, which can be reduced by grid refinement. To 
generate the computation domain, we developed a specific program adapted for a personal computer of the 
IBM PC type. This program locates the conductor and dielectric regions in the computation domain. 

An index kij which determines the conductor or dielectric number is assigned to each (i, j )  cell, where 
0 ~ i ~< Ny and 0 ~< j ~< Nz. The grid step sizes along the Oy and Oz axes are constant. We denote them 
by hy and hz, respectively, and the time step size is denoted by h,. The conductivity, density, heat capacity, 
and heat conductivity are assumed to depend only on k. 

The vector potential of the electromagnetic field Aii (over the entire computation domain) and the 
scalar-potential gradient ~ok (only for the conductors) are calculated by the difference scheme 

H i ( A i + I , j -  2Ai,j + Ai- l , j  + fti+l,j - 2,4i,j + ,4i-l , j)  + H j ( A i , j + j -  2Ai,j 

"lr A i , j - 1  -1- f~i , j+l  - 2f~i,j + fti , j- 0 + aklz,,(h6ok --(Ai , j  - Ai,j)) = O, (16) 

~o,n ~ ak = I~ h, + ~_, a k ( A i l -  Aij). 
kij = m  h i hj kij =m 

(17) 

Here 1 ~ i < Ni - 1, 1 <~ j < Nj  - 1, Hi = 0.5ht/h~, Hj  = 0.5ht/h 2, and 3, is the vector potential at the 
previous time level. The boundary conditions for the difference problem are chosen to be zero first-order finite 
differences of A, which corresponds to a zero magnetic-induction tangent vector to the boundary: 

Ao,j -'- Ai,j, ANi-I , j  = ANi-2,j, Ai,o = Ai,1, Ai,,vj-1 = Ai,/vj-2. (18) 

Note that the values of the vector potential at four corner cells are not used in calculations by formulas 
(16)-(18). Therefore, these values can be disregarded. 

The temperature Ti,j was found by the difference scheme 

Hi(Ti+l,j - 2Ti,j -b Ti-l , j  + Ti+l,j - 2Ti,j q- Ti- l , j )  "Jr Hj(Ti,j+j - 2Ti,j + Ti , j - ,  

o (19) + 2r + r + h, 

(T is the temperature at the preceding time level, Ak, Ok, and %k are the heat conductivity, density, and heat 
capacity of the kth conductor or dielectric). The boundary conditions are 

T0,j = T,, j ,  TN~-I, j  = T~c~-2,j, Ti,0 = Ti,1, Ti ,Nj-1 = Ti,~r~-2. (20) 
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System (16) and (17) with boundary conditions (18) and system (19) with boundary conditions (20) 
are solved by a symmetric successive over-relaxation method (alternately by rows and columns, see [11]). In 
each iteration, the calculations are performed in the following order: first (16) is calculated by rows for given 
~ ,  then ~ok is calculated from (17), then (16) by columns, then again ~0k from (17), then (19) is calculated by 
rows, and then (19) by columns. Each solution of the system of difference equations (16) or (19) yields systems 
of tridiagonal difference equations with boundary conditions obtained from (18) and (20), respectively. To 
solve these equations, we use a reduction method (which is described in a simplified form, for example, in 
[12]) rather than the standard tridiagonal algorithm. Unlike the standard method, the reduction method is 
absolutely stable for arbitrary coefficients of a tridiagonal equation, provided its solution exists and is unique. 

The condition 

l ug '  - r.j '-al + IU~ - U~-al 
max IAml m a x  l T  'n  - Tol 

< 1o -4 (21) 

is used as a criterion for the termination of the iterative process. Here  U ~  an d  U ~  are the residuals at the 
mth iteration step: 

uA = V?jh hj , 
1,3 

Here U is the left-hand side of Eq. (16) and V is the left-hand side of Eq. (191, A m and T m are the vector 
potential and the temperature at the ruth iteration step, respectively, and To is the initial temperature. 

After iteration at each time step, the current density, magnetic induction vector components, and the 
volume electromagnetic force vector can be calculated as follows: 

(Jz)0 = a'k(~k -- (Aij - ,4ij)/ht), (By)ij = 0,25(Aij+l - Ai j -1  + ~-i,j+l - Ai , j -O/h j ,  
(23) 

(Bz)ij = -0 ,  25(Ai+l,j - Ai- l , j  + Ai+ld - f~i-l,j)/hi, (fy)ij = - (Bz) i j ( j z ) i j ,  ( f , ) i j  = (B~)ij(jz)ij. 

The inductance and resistance of the system per unit length have the form 

L= Z ~((B~,l~i+(Bz)~jl/mkaxlI, l~, R= ~_, J?J /~axlI ,  I 2. (24/ 
Iga i,j i,j:ak~O O'kij 

Calcula t ion  Resul ts .  Symmetric and asymmetric model railgnn profiles are chosen for caiculation. 
Each of them consists of two rails (conductors) separated by a dielectric. The conductors carry an equal and 
opposite strong pulsed current. The conductors are surrounded by a protective metallic armature which is also 
separated from them by a dielectric. The total current in the armature is equal to zero. The railgnn channel 
is located at the center of the profile between the rails. For both cases, the following initiai data are used: 
- -  the size of the profile including the surrounding cells, i.e., the size of the computation domain aiong the 
Oy and Oz axes, is 10 cm, 
- -  the initial temperature is 280 K, 
- -  the current intensity varies with time as I = 10%anh(2000t). 

Characteristics of different computation subdomains are summarized in Table 1. 
Using these input data and assuming that the initial temperature is To and the magnetic field is 

zero, we performed calculations which gave qualitative and quantitative patterns of phenomena related to the 
diffusion of the electromagnetic field into the rails. The numerical-calculation parameters are as follows: the 
time step is 1 microsecond, the size of the computation grid is 65 x 65, and the relaxation parameter is 1.2. 

Figures 1-3 show isolines of the module of the magnetic-induction vector [B[, current density j~, and 
temperature increment AT = T - To for a symmetric profile. Figures 4-6 present these quantities in the 
corresponding order for an asymmetric profile. 
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TABLE 1 

a, S { p, kg/m 3 %, J/(kg.K) { A, W/(m.K) 

P~ls 
2.5.107 I 8900 390 I 58 

Armature 
2.5.zo  I 8900 I 300 I 58 

Dielectric 
o l 10001 1500 l 50 

1.0 'JH/m ; R ,  m~/m ; AT, kK ~  
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Figure 7 shows the resistance R and inductance L per unit length, current intensity I and maximum 
temperature increment AT as functions of time for t < 2200 gsec (Fig. 7a refers to the symmetric profile, and 
7b indicates the asymmetric profile). The calculation is carried out up to t = 1900 #sec with an increasing 
current intensity. Then, the circuit is assumed broken, the total current in the circuit is set equal to zero, 
and the decay of the magnetic field in the conductors is investigated. The resistance and inductance per unit 
length are not determined in the case of zero total current. 

The qualitative pattern of diffusion of the magnetic field into the rails in the profile plane is as follows. 
In an initial stage, the magnetic field builds up linearly and is located mainly in the space between the rails 
and the armature. An electric current flows in the vicinity of the surface of the rails and in those places of the 
armature which are closest to the rails [3-6, 13]. The maximum magnitude of magnetic induction is observed 
in the railgun channel. It decreases rapidly at the entrance of the space between the rails and deep inside the 
conductors. The current density is maximal at the corners of the conductors, and primarily at the corners 
of the rails. A comparison of the results for the symmetric and asymmetric profiles shows that this takes 
place only for the exterior corners. The temperature increases primarily on the rail surface facing the railgun 
channel, and it is notably high at the corners. The pattern changes somewhat as the current increases and 
reaches a steady state. The magnetic field penetrates into the rails and the armature. The maximum magnetic 
induction remains in the space between the rails in the railgun channel, as before. The electric current also 
penetrates into the conductors and tends to fill them. The temperature rise becomes noticeable not only at 
the corners of the conductors, but also over their entire surface (with no penetration deep into the conductors, 
as before). The resistance per unit length of the system decreases, and the inductance increases with diffusion 
of the magnetic field. Both quantities tend to a value that corresponds to the steady case. 
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